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Abstract. We have studied the essential physics of magnetophonon resonances (MPR) in quasi-
two-dimensional (Q2D) and quasi-one-dimensional (Q1D) electronic systems brought about by
the electron confinement due to the electrostatic potentials and the magnetic confinement on
tilting a perpendicular magnetic field. Qualitative features of the MPR effects, their physical
origin, and the dimensional crossover between Q2D and Q1D systems associated with the
confining potential in tilted magnetic fields are discussed in detail, on the basis of a simple
model of parabolic confining potentials.

1. Introduction

Recently, the magnetophonon resonance (MPR) effect in low-dimensional systems [1–13]
has received much attention from both the experimental and theoretical points of view, since
the quantization of electron energies in Q2D and Q1D electron gas (EG) systems in the
presence of a high magnetic field is different from that of a bulk (3DEG) system [14–18].
Moreover, a suitably directed magnetic field serves to add an extra confining potential to
the initial electrostatic confinement and causes a dramatic change in the energy spectrum,
leading to so-called hybrid magnetoelectric quantization. As a consequence, one would
expect different behaviour of the MPR effects in such systems from the known MPR effects
in 3DEG systems.

Many of the MPR theories for Q2DEG systems considered the case in which the
magnetic field is applied normal to the Q2D electronic plane [6, 7, 9]. When the confinement
is sufficiently tight and one can neglect the inter-sub-band transitions, the MPR condition
for such Q2D systems is the same as that for a bulk (3D) system, since the two-dimensional
constraint does not influence the cyclotron motion. However, in the case of a Q1D system
[10–13], there exists an additional confining potential in the plane in which the electrons
undergo cyclotron motion. Accordingly, this affects the Landau quantization. Therefore,
MPR conditions in Q1D systems will be different from those in Q2D systems. Moreover,
we can expect that if one applied a magnetic field at an arbitrary angle, a confining potential
would appear in the new plane of the cyclotron motion. Thus we expect that this will affect
the MPR conditions in the Q2D systems as well. Even in the same Q2D system, the
resonance conditions would be different from the tight- and loose-confinement cases. In the
case of a Q1D electronic system, a tilted magnetic field applied to the transverse direction of
the Q1D quantum wire should influence the MPR condition in two ways. Not only are the
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energy spacings between sub-bands affected, but also an additional effective confinement
potential is formed. Moreover, the angle dependence of the MPR in an asymmetric quantum
wire would be different from that in a symmetric quantum wire.

The purpose of the present work is to investigate the MPR effects in Q1D and Q2D
electronic systems in an effort to understand the qualitative behaviour of the MPR effects in
such low-dimensional systems, on the basis of a simple parabolic model for the confinement
potential. We shall derive the conductivityσyy for the Q1D/Q2D electronic system subjected
to a tilted magnetic field and obtain MPR conditions as a function of the field strength(B),
and tilt angle(θ) of the applied magnetic field(B) as well as the strength parameters (ω1

and/orω2) of the parabolic potentials, which characterize the strength of confinement of the
Q1DEG and Q2DEG. We will investigate how the MPR effects are affected by the constraint
due to the directionality of the applied magnetic fields. This gives an anomalous angular
dependence of the field positions. We examine the dependence of the MPR on the strengths
of the confining potentials (that is, the dimensionality difference between the Q2D and
the Q1D systems). In the formulation of the problem, the single-particle picture has been
used throughout this work, and thus the electron–electron interactions have been ignored.
Although such interactions would be expected to affect the MPR linewidth considerably,
they are not expected to change the overall MPR lineshape. We assume that the interaction
with bulk LO phonons is the dominant scattering mechanism.

The rest of the paper is organized as follows. In section 2, an exactly solvable model
for Q2D and Q1D electronic systems is presented in a unified manner. In section 3, general
formulae for the transverse magnetoconductivityσyy and the relaxation rate0/h̄ are given
and are evaluated for the Q1D/Q2D model system subjected to a tilted magnetic field. We
show that the transverse magnetoconductivityσyy for the Q2D/Q1D system consists of the
usual Drude term arising from the drift motion of electrons, and hopping terms associated
with MPR. In section 4, the relaxation rate, which is closely related to the MPR, is evaluated
for bulk LO-phonon scattering in the Q1D/Q2D EG system. The MPR conditions for the
model systems are given explicitly and the effects of tilted magnetic fields and the confining
potential on the MPR are discussed. Here, special attention is given to the behaviour of
the MPR lineshape, such as the appearance of subsidiary MPR peaks, the shift of these
MPR peaks and a reduction in MPR amplitude. Physical analysis of the theoretical results
obtained is given in section 5. Diagonalization of the Hamiltonian which contains the
crossed term is presented in an appendix.

2. The model for Q2D and Q1D electronic systems in tilted magnetic fields

We consider the transport of an electron gas in a quantum-well structure and a quantum-wire
structure. The Q2D electron gas is assumed to be confined to thex–y plane by an ideal
parabolic potential12mω

2
2z

2 whereas the Q1D electron gas is assumed to be further confined
in the x-direction by an additional parabolic potential1

2mω1x
2 thus restricting free motion

to they-axis alone. In the presence of a magnetic field, the one-particle Hamiltonian(He)

for such Q1D/Q2D electrons is expressed in a unified manner by

He = 1

2m
(p+ eA)2+ V (x, z) (2.1)

whereA is a vector potential accounting for a constant magnetic fieldB = ∇×A, m is
the effective mass, and the confining potentialV (x, z) is given by

V (x, z) = 1

2
mω2

1x
2+ 1

2
mω2

2z
2. (2.2)
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We can see the dimensional crossover between the Q2D and the Q1D electronic systems
(i.e., ω1 → 0 for the Q2D electronic system) as well as the difference in the strength
of each confinement on varying the confining-potential parameters (ω1 and/or ω2) in
equation (2.2) for the Q1D/Q2D system. We shall consider the case in which the magnetic
field B is applied in the transverse tilt direction to the wire/plane of the conductor:
B = (Bx, 0, Bz) = (−B sinθ, 0, B cosθ). Here, the angleθ is measured from thez-
axis in the x–z plane. To simplify the mathematics, we rotate the coordinatesx and
z by θ with respect to they-axis so that the components of the appliedB field in
the new coordinates(x ′, y ′, z′) can be expressed by(Bx ′ , By ′ , Bz′) = (0, 0, B), with the
Landau gaugeA = (Ax ′ , Ay ′ , Az′) = (0, Bx ′, 0). After the coordinate transformations
{Ry(θ)|(x, y, z) 7→ (x ′, y ′, z′)}, the one-particle Hamiltonian (2.1) for those confined
(Q1D/Q2D) electrons subjected to the transverse tilted magnetic field can be expressed
in the new Cartesian coordinates(x ′, y ′, z′) as

He = 1

2m
[p2
x ′ + (py ′ +mωcx ′)2+ p2

z′ ] + V (x ′, z′) (2.3)

whereV (x ′, z′) is given by

V (x ′, z′) = m

2

[
(ω2

1 cos2 θ + ω2
2 sin2 θ)x ′2+ (ω2

1 sin2 θ + ω2
2 cos2 θ)z′2

]
+ m(ω2

2 − ω2
1) cosθ sinθx ′z′. (2.4)

Here,ωc (=eB/m) is the cyclotron frequency. It should be noted that the tilt angleθ of the
appliedB-field is defined asθ = tan−1(Bx/Bz) and that the momentum componentpy ′ is a
constant of motion and can be written aspy = h̄ky , whereky is the quasi-continuous wave
vector of motion parallel to the interfaces (that is, the wire/plane is in they-direction (≡ the
y ′-direction). In this way, equation (2.1) along with equation (2.2) can be represented by
two coupled harmonic oscillators as seen in equation (2.3) with equation (2.4). However,
in the usual case in whichω1, ω2 � ωc, we can safely neglect the cross term(∝ x ′z′)
in equation (2.4) (see the appendix). Thus, equation (2.3) with equation (2.4) can be
approximated as

He = p2
x ′

2m
+ m

2
�2
x ′(x

′ + x0)
2+ p2

z′

2m
+ m

2
�2
z′z
′2+ p

2
y ′

2m̃
(2.5)

where�x ′ and�z′ are respectively given by

�x ′ =
√
ω2

1 cos2 θ + ω2
2 sin2 θ + ω2

c (2.6a)

�z′ =
√
ω2

1 sin2 θ + ω2
2 cos2 θ (2.6b)

and a renormalized effective massm̃ is given by

m̃ = m
(

1− ω2
c

�2
x ′

)−1

. (2.7)

The Hamiltonian (2.5) expressed in the new Cartesian coordinates is basically the
Hamiltonian for two independent 1D simple harmonic oscillators, one with the effective
(renormalized) cyclotron frequency�x ′ in the x ′-direction and the other with the effective
confinement (sub-band) frequency�z′ in the z′-direction. In other words, those confined
(Q1D/Q2D) electrons feel the effective potentialm�2

x ′(x
′ + x0)

2/2+ m�2
z′z
′2/2, wherex0

is given by

x0 = ωcpy ′

m�2
x ′
≡ h̄ωcky ′
m�2

x ′
. (2.8)
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The last term in equation (2.5) represents they-component of the kinetic energy of a confined
electron but with a field-dependent renormalized massm̃ with respect to the effective mass
m. Due to the presence of the confining potentials and/or the tilted magnetic field, the
effective massm̃ is increased by a factor(1− ω2

c/�
2
x ′)
−1, which depends on a tilt angleθ ,

the cyclotron frequencyωc, and the confining-potential parameters(ω1, ω2) characterizing
the dimensionality of the system.

The normalized eigenfunctions and eigenenergies of the one-electron Hamiltonian (2.5)
are given by

〈r|α〉 ≡ 〈x ′, y ′, z′|n, l, ky ′ 〉 = 1√
Ly
ϕn(x

′ + x0)e
iky′y ′ϕl(z

′) (2.9)

and

εα ≡ εn,l,ky′ =
(
n+ 1

2

)
h̄�x ′ +

(
l + 1

2

)
h̄�z′ +

h̄2k2
y ′

2m̃
n, l = 0, 1, 2, . . . (2.10)

respectively. In equation (2.9),ϕn(x ′ +x0) andϕl(z′) denote 1D simple-harmonic-oscillator
wave functions with centres of the oscillation atx ′ = −x0 andz′ = 0, respectively, given
by

ϕn(x
′ + x0) =

√
1

π1/22nn!lx ′
Hn
(
x ′ + x0

lx ′

)
exp

[
−1

2

(
x ′ + x0

lx ′

)2
]

(2.11a)

ϕl(z
′) =

√
1

π1/22l l!lz′
Hl
(
z′

lz′

)
exp

[
−1

2

(
z′

lz′

)2
]

(2.11b)

whereHn(x) denotes a Hermite polynomial [19],lx ′ =
√
h̄/m�x ′ and lz′ =

√
h̄/m�z′ .

The states of the Q1D/Q2D system are specified by two indicesn, l and the wave vector
ky ′ (≡ky = py/h̄), which govern the full energy spectrum given in equation (2.10). The
wave function exp(ikyy) in equation (2.9) expresses a free motion in they-direction (i.e.,
the y ′-direction). The dimensions of the sample are assumed to beV = LxLyLz. As
shown in equation (2.10), the energy spectrum for the present Q1D and Q2D systems
is hybrid quantized due to the presence of the tilted magnetic field and the electrostatic
confining potential (2.2). The set of quantum numbers is designated by(n, l, ky), where
n and l denote the effective Landau (magnetic) and sub-band (electrostatic) level indices,
respectively. We note that the dimensional crossover can be seen in the energy spectrum
by simply varying the confining-potential parameters;ω1→ 0 for the Q2DEG system and
ω1, ω2 → 0 for the 3DEG system. It is interesting that the dependence of the energy
spectrum in equation (2.10) on the confining-potential parameters(ω1, ω2), the magnetic
field direction(θ), and the magnitude of the applied magnetic field(B) has an important
effect on the MPR effects for the Q1D/Q2D electronic system.

In the following treatment, we assume that the vibrational (phonon) spectra in the
Q1D/Q2D system are identical with those in a bulk material, i.e., that the phonons, to
a first approximation, are not affected by the heterojunctions forming quantum-wire and
quantum-well structures. Deviations from this bulk behaviour, such as interface modes or
slab modes, are neglected. The electron–phonon interaction Hamiltonian is then generally
expressed by [20–22]

He−ph =
∑
q

[γq(r)bq + γ †q (r)b†q] (2.12)
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wherebq andb†q are, respectively, the annihilation and creation operators for phonons with
wave vectorq and energy ¯hωq, and the single-electron interaction operatorγq(r), which
should be defined in terms of the matrix elements referring to electron states, is given by

γq(r) = C(q) exp(iq · r). (2.13)

Here,C(q) is the Fourier transform of the electron–phonon interaction potential.

3. Magnetoconductivity associated with relaxation rates

In this section, an analytical expression of the transverse dc magnetoconductivityσyy for
the model systems described in the previous section is developed by using the Kubo-
type formula for a non-linear dc conductivity obtained previously [21]. For weak electric
fieldsE = Eŷ and weak interaction potentials, the Kubo-type formula for the non-linear
conductivity σrs(E) (equation (3.18) of reference [21]) for an electron–phonon system is
reduced to

σrs(0) = h̄

V

∑
λ1,λ2

〈λ1|js |λ2〉〈λ2|jr |λ1〉f (ε1)− f (ε2)

ε2− ε1

01,2

(ε1− ε2)2+ 02
1,2

(r, s = x, y, z).

(3.1)

Here, V is the volume,f (εi) is a Fermi–Dirac distribution function for electrons with
energyεi associated with the state|λi〉, h̄ is the Planck constant divided by 2π , andjr is
ther-component of a single-electron current operatorj = −(e/m)(p+eA), −e (<0) being
the electron charge. The quantity01,2 is associated with electronic transitions between the
states|λ1〉 and |λ2〉 effected by absorbing and/or emitting a phonon with an energy ¯hωq,
and plays the role of the width (collision broadening) in the spectral lineshape. The01,2

in equation (3.1) is evaluated from the general expression for the electric-field-dependent
01,2(E) given by equation (3.19a) of reference [21]. For a weak electron–phonon interaction
and in the limit of weak electric fields, the expression is

01,2 = π
∑
q

∑
λ3

[
(Nq + 1)

{
|〈λ2|γq|λ3〉|2δ(ελ1 − ελ3 − h̄ωq)+ |〈λ3|γ †q |λ1〉|2

× δ(ελ3 − ελ2 + h̄ωq)
}
+Nq

{
|〈λ2|γ †q |λ3〉|2δ(ελ1 − ελ3 + h̄ωq)

+ |〈λ3|γq|λ1〉|2δ(ελ3 − ελ2 − h̄ωq)
}]

(3.2)

whereNq (=[exp(βh̄ωq)−1]−1) is the Planck distribution function for phonons with energy
h̄ωq (q being a 3D wave vector of phonons),β = 1/kBT (kB being Boltzmann’s constant,
T the phonon temperature),γq is a single-electron–phonon interaction operator given by
equation (2.13), andελ is the eigenenergy of an electron in the state|λ〉. It should be noted
that equation (3.1) along with equation (3.2) is equivalent to the well-known Kubo formula
for an electrical conductivity in an electron–phonon system [20, 22].

To calculate the transverse magnetoconductivityσyy for the present model systems, we
need the matrix elements of they-component single-electron current operator,jy (≡jy ′),
which is given in the new coordinates by

jy ′ = − e
m
(py ′ + eAy ′) = − e

m
(py ′ + eBx ′). (3.3)

In the representation (2.9), we obtain the matrix elements|〈n′, l′, k′y ′ |jy ′ |n, l, ky ′ 〉|2 as

|〈n′, l′, k′y ′ |jy ′ |n, l, ky ′ 〉|2 =
(
eh̄ky ′

m

)2(2π

Ly

)2

δn′,nδl′,lδ(ky ′ − k′y ′)
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+ (eωclx ′)
2

2

(
2π

Ly

)2

[nδn′,n−1+ (n+ 1)δn′,n+1]δl′,lδ(ky ′ − k′y ′). (3.4)

By making use of equations (3.1) and (3.4), the transverse magnetoconductivityσyy for the
present model systems can be expressed as

σyy = 4π2h̄

V L2
y

∑
α1,α2

[
e2h̄2k2

1

m2
δn2,n1 +

e2ω2
c l

2
x ′

2
{n1δn2,n1−1+ (n1+ 1)δn2,n1+1}

]
δl2,l1

× δ(k1− k2)
f (ε1)− f (ε2)

ε2− ε1

01,2

(ε1− ε2)2+ 02
1,2

(3.5)

where the notationki (≡kiy ′) has been used, and the Fermi–Dirac distribution function
f (εi) is associated with the eigenstate|αi〉 in equation (2.9) with its eigenenergyεi given
by equation (2.10). The01,2 in equation (3.5) can be calculated from equation (3.2) for the
present model systems. The matrix elements ofγq andγ †q are respectively found with the
use of the representation (2.9) to be

|〈n′, l′, k′y ′ |γq|n, l, ky ′ 〉|2 =
(

2π

Ly

)2

|C(q)|2|Jn′,n(u)|2|Jl′,l(v)|2δ(qy ′ + ky ′ − k′y ′) (3.6a)

|〈n′, l′, k′y ′ |γ †q |n, l, ky ′ 〉|2 =
(

2π

Ly

)2

|C(q)|2|Jn′,n(u)|2|Jl′,l(v)|2δ(qy ′ − ky ′ + k′y ′) (3.6b)

where|Jn′,n(u)|2 and |Jl′,l(v)|2 are respectively given by

|Jn′,n(u)|2 = n<!

n>!
e−uun>−n< [Ln>−n<n<

(u)]2 (3.7a)

|Jl′,l(v)|2 = l<!

l>!
e−vvl>−l< [Ll>−l<l<

(v)]2. (3.7b)

Here, u, v are given byu = 1
2{l−2

x ′ (x0 − x ′0)2 + l2x ′q2
x ′ } and v = 1

2l
2
z′q

2
z′ , respectively. In

equations (3.7a), (3.7b), Lmn (x) denotes a Laguerre polynomial [19],n> = max [n, n′],
n< = min [n, n′], l> = max [l, l′], and l< = min [l, l′]. By making use of equations (3.6a),
(3.6b), and (2.10) in equation (3.2), we obtain the01,2 in equation (3.5) as

01,2 = π
∑
q

∑
λ3

(
2π

Ly

)
|C(q)|2

{
(Nq + 1)

[∣∣Jn2n3(u2)
∣∣2 ∣∣Jl2l3(v)∣∣2 δ(qy ′ + k3

− k2)δ[(n1− n3)h̄�x ′ + (l1− l3)h̄�z′ + h̄2(k2
1 − k2

3)/2m̃− h̄ωq]

+ ∣∣Jn3n1(u1)
∣∣2 ∣∣Jl3l1(v)∣∣2 δ(−qy ′ + k1− k3)

× δ[(n3− n2)h̄�x ′ + (l3− l2)h̄�z′ + h̄2(k2
3 − k2

2)/2m̃+ h̄ωq]
]}

+ π
∑
q

∑
λ3

(
2π

Ly

)
|C(q)|2

{
Nq

[∣∣Jn2n3(u2)
∣∣2 ∣∣Jl2l3(v)∣∣2 δ(−qy ′ + k3

− k2)δ[(n1− n3)h̄�x ′ + (l1− l3)h̄�z′ + h̄2(k2
1 − k2

3)/2m̃+ h̄ωq]

+ ∣∣Jn3n1(u1)
∣∣2 ∣∣Jl3l1(v)∣∣2 δ(qy ′ + k1− k3)

× δ[(n3− n2)h̄�x ′ + (l3− l2)h̄�z′ + h̄2(k2
3 − k2

2)/2m̃− h̄ωq]
]}

(3.8)

whereu1 andu2 are respectively given by

u1 = 1

2
[l−2
x ′ (x1− x3)

2+ l2x ′q2
x ′ ]
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and

u2 = 1

2
[l−2
x ′ (x2− x3)

2+ l2x ′q2
x ′ ]

with xi = h̄kiωc/m�
2
x ′ . Since we are dealing with the Q1D/Q2DEG formed in the

heterointerfaces of semiconductors, the electron density of such systems is customarily
very low. In the high-temperature or the non-degenerate limit(exp[β ′(εα − µ)] � 1) for
those confined free electrons, the Fermi–Dirac distribution functionsf (εi) (≡f (εαi )) in
equation (3.5) can be approximated as a Boltzmann distribution function:

f (εα) ≈ A exp
[
β ′(µ− εα)

]
. (3.9)

Here,µ denotes the Fermi energy andβ ′ = 1/kBT ′, T ′ being the electron temperature.
Note thatT ′ = T (β ′ = β) holds for the present case since it is assumed that the Q1D/Q2D
electronic system is subjected to a weak electric field. The normalization constantA is
determined from

Ne =
∑
α

f (εα) = Ly

2π

∑
n,l

∫
dky f (εn,l,ky )

(Ne being the total number of electrons in the system) and is given by

A = (2πβ)1/2Ne{1− exp[−βh̄�x ′ ]}{1− exp[−βh̄�z′ ]}
Lym̃1/2 exp[β(µ− h̄�x ′/2− h̄�z′/2)] . (3.9a)

Utilizing equations (3.8) and (3.9) in equation (3.5) and carrying out theα2-summation (i.e.,∑
α2
≡∑n2,l2

∑
k2

) by converting∑
α2

→ Ly

2π

∑
n2,l2

∫
dk2

the conductivity formula (3.5) for the Q1D/Q2D electronic system can be written as

σyy = h̄

V

∑
n1,l1

∫
dk1

e2h̄2β

m2
k2

1f (εα1)
1

0
(1)
1

− h̄

V

∑
n1,l1

∫
dk1

e2ω2
c l

2
x ′

2h̄�x ′

× Aeβ(µ−h̄�x′ /2−h̄�z′ /2)e−βn1h̄�x′ (1− eβh̄�x′ )e−βl1h̄�z′e−βh̄
2k2

1/2m̃

× 0
(2)
1

(h̄�x ′)2+ (0(2)1 )2
+ h̄

V

∑
n1,l1

∫
dk1

e2ω2
c l

2
x ′

2h̄�x ′
Aeβ(µ−h̄�x′ /2−h̄�z′ /2)

× e−βn1h̄�x′ (1− e−βh̄�x′ )e−βl1h̄�z′e−βh̄
2k2

1/2m̃
0
(3)
1

(h̄�x ′)2+ (0(3)1 )2
(3.10)

whereA is given by equation (3.9a). 0(1)1 , 0(2)1 , 0(3)1 are respectively given by

0
(1)
1 := π

∑
q

∑
n3,l3

∫
dk3

4π

Ly
|C(q)|2(Nq + 1)|Jn1,n3(u1)|2|Jl1,l3(v)|2δ(qy ′ + k3

− k1)δ[(n1− n3)h̄�x ′ + (l1− l3)h̄�z′ + h̄2(k2
1 − k2

3)/2m̃− h̄ωq]

+ π
∑
q

∑
n3,l3

∫
dk3

4π

Ly
|C(q)|2Nq|Jn1,n3(u1)|2|Jl1,l3(v)|2δ(qy ′ + k1

− k3)δ[(n3− n1)h̄�x ′ + (l3− l1)h̄�z′ + h̄2(k2
3 − k2

1)/2m̃− h̄ωq] (3.11)

0
(2)
1 := π

∑
q

∑
n3,l3

∫
dk3

2π

Ly
|C(q)|2(Nq + 1)

[
|Jn1−1,n3(u1)|2|Jl1,l3(v)|2δ(qy ′ + k3
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− k1)δ[(n1− n3)h̄�x ′ + (l1− l3)h̄�z′ + h̄2(k2
1 − k2

3)/2m̃− h̄ωq]

+ |Jn3,n1(u1)|2|Jl3,l1(v)|2δ(−qy ′ + k1− k3)

× δ[(n3− n1+ 1)h̄�x ′ + (l3− l1)h̄�z′ + h̄2(k2
3 − k2

1)/2m̃+ h̄ωq]
]

+ π
∑
q

∑
n3,l3

∫
dk3

2π

Ly
|C(q)|2Nq

[
|Jn1−1,n3(u1)|2|Jl1,l3(v)|2δ(−qy ′ + k3

− k1)δ[(n1− n3)h̄�x ′ + (l1− l3)h̄�z′ + h̄2(k2
1 − k2

3)/2m̃+ h̄ωq]

+ |Jn1,n3(u1)|2|Jl1,l3(v)|2δ(qy ′ + k1− k3)

× δ[(n3− n1+ 1)h̄�x ′ + (l3− l1)h̄�z′ + h̄2(k2
3 − k2

1)/2m̃− h̄ωq]
]

(3.12)

0
(3)
1 := π

∑
q

∑
n3,l3

∫
dk3

2π

Ly
|C(q)|2(Nq + 1)

[
|Jn1+1,n3(u1)|2|Jl1,l3(v)|2δ(qy ′ + k3

− k1)δ[(n1− n3)h̄�x ′ + (l1− l3)h̄�z′ + h̄2(k2
1 − k2

3)/2m̃− h̄ωq]

+ |Jn3,n1(u1)|2|Jl3,l1(v)|2δ(−qy ′ + k1− k3)

× δ[(n3− n1− 1)h̄�x ′ + (l3− l1)h̄�z′ + h̄2(k2
3 − k2

1)/2m̃+ h̄ωq]
]

+ π
∑
q

∑
n3,l3

∫
dk3

2π

Ly
|C(q)|2Nq

[
|Jn1+1,n3(u1)|2|Jl1,l3(v)|2δ(−qy ′ + k3

− k1)δ[(n1− n3)h̄�x ′ + (l1− l3)h̄�z′ + h̄2(k2
1 − k2

3)/2m̃+ h̄ωq]

+ |Jn1,n3(u1)|2|Jl1,l3(v)|2δ(qy ′ + k1− k3)

× δ[(n3− n1− 1)h̄�x ′ + (l3− l1)h̄�z′ + h̄2(k2
3 − k2

1)/2m̃− h̄ωq]
]
. (3.13)

In equation (3.10), the first term expresses theDrude term arising from the drift (non-
hopping) motion of electrons within the localized states through the electron–phonon
interaction. In contrast, the second and the third terms express thehopping terms, which
are associated with electron hopping motion between the localized (effective Landau and/or
sub-band) states effected by absorbing and/or emitting a phonon with an energy ¯hωq in
the scattering events. In fact, these terms are related to the oscillatory behaviour of MPR
effects. Accordingly, we shall denote the transverse magnetoconductivity associated with
these hopping terms asσMPRyy hereafter. In the next section, we shall analyse it in detail in
order to get insight into MPR effects in the Q1D and the Q2D electronic systems.

4. Magnetophonon resonances in tilted magnetic fields

Let us consider the case where the applied magnetic field(B) is so large that the cyclotron
energy h̄ωc is sufficiently larger than the temperature(T ) of the system. In the high-
temperature (or the non-degenerate limit) and the high-quantum limit (¯hωc � kBT ), only
one or two magnetic sub-bands (namely, effective Landau levels) are customarily occupied.
Accordingly, it may be sufficient for us to consider the electronic transitions between
the states specified byni = 0, 1 and li = 0, 1 (i = 1, 2) in equation (3.5) or (3.10)
for the fundamental MPR. When the electrons are in the lowest effective Landau level
(namely, whenn1 = 0), the term withδn2,n1−1 in the conductivity (3.5) becomes zero
due to the selection rule (3.4), and does not contribute to the conductivity. Therefore, the
conductivity formula (3.5) and hence (3.10) associated with MPR for the Q1D/Q2DEG can
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be expressed by

σMPRyy = h̄

V

∫
dk1

e2ω2
c l

2
x ′

h̄�x ′
Aeβ(µ−h̄�x′ /2−h̄�z′ /2−h̄

2k2
1/2m̃)(1− e−βh̄�x′ )

0
(3)
1

(h̄�x ′)2+ (0(3)1 )2

(4.1)

where after carrying out thek3-integration in equation (3.13),0(3)1 is given by

0
(3)
1 = π

∑
q

∑
n3,l3

(2π/Ly)|C(q)|2(Nq + 1)
[
|J1,n3(u)|2|J0,l3(v)|2δ[−n3h̄�x ′ − l3h̄�z′

− h̄2(q2
y ′ − 2k1qy ′)/2m̃− h̄ωq] + |J0,n3(u)|2|Jl3,0(v)|2δ[(n3− 1)h̄�x ′

+ l3h̄�z′ + h̄2(q2
y ′ − 2k1qy ′)/2m̃+ h̄ωq]

]
+ π

∑
q

∑
n3,l3

(2π/Ly)|C(q)|2

× Nq
[
|J1,n3(u)|2|J0,l3(v)|2δ[−n3h̄�x ′ − l3h̄�z′ − h̄2(q2

y ′ + 2k1qy ′)/2m̃

+ h̄ωq] + |J0,n3(u)|2|J0,l3(v)|2δ[(n3− 1)h̄�x ′ + l3h̄�z′
+ h̄2(q2

y ′ + 2k1qy ′)/2m̃− h̄ωq]
]
. (4.2)

Hereu, v are given byu = l2x ′(ω2
cq

2
y ′/�

2
x ′ + q2

x ′)/2 andv = l2z′q2
z′/2, respectively. To obtain

equations (4.1) and (4.2), we took into account thatli = 0, 1 (i = 1, 2) for the effective
(electrostatic) sub-band states in the evaluation of equation (3.5) along with equation (3.8).
Since we are considering the MPR effects, where electrons are scattered by LO phonons,
we may putωq = ωLO (≈constant), whereωLO is the LO-phonon frequency. Here, we
assume that the phonons are dispersionless and bulk (three dimensional). Accordingly, the
Planck distribution functionNq should be replaced byN0 ≡ [exp(βh̄ωLO) − 1]−1 and the
Fourier component of the interaction potential|C(q)|2 will be replaced by ¯hD2/2ρωLOV
for LO-phonon scattering as was done by several authors [6, 12, 23]. Here,ρ is the bulk
density andD is a constant with energy dimensions. In the evaluation of equation (4.2) for
bulk LO phonons, we consider the case whereqy ′ � k1 since the maximum of the density
of states appears atk1 = 0 and so we can set

h̄2(q2
y ′ ± 2k1qy ′)/2m̃ ≈ h̄2q2

y ′/2m̃

in the calculation of0(3)1 as an approximation as did Moriet al [11]. By converting the
sum overq into integrals according to the usual prescription∑

q

→ V

(2π)3

∫ ∫ ∫
dqx ′ dqy ′ dqz′

in equation (4.2), the equation for0(3)1 can be analytically evaluated as

0
(3)
1 ≈ 3

�2
x ′
√
�x ′�z′

�2
x ′ −�2

z′
(N0+ 1)

[
exp

[−κ(1− ωLO/�x ′)]2(�x ′ − ωLO)
+ 1

2
exp

[−κ(1−�z′/�x ′ − ωLO/�x ′)]2(�x ′ −�z′ − ωLO)]
+ 3′�

2
x ′
√
�x ′�z′

�2
x ′ −�2

z′
N0

[
2 exp

[−κωLO/�x ′] (κωLO/�x ′ + 1/2)

+ exp
[−κ(ωLO/�x ′ −�z′/�x ′)] (κ(ωLO/�x ′ −�z′/�x ′)+ 1/2

)
× 2(ωLO −�z′)+ exp

[−κ(ωLO/�x ′ − 1)
] (

3/2− κ(ωLO/�x ′ − 1)
)
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× 2(ωLO −�x ′)+ exp
[−κ(ωLO/�x ′ − 1−�z′/�x ′)

]
×
(

1/4− κ(ωLO/�x ′ − 1−�z′/�x ′)/2
)
2(ωLO −�x ′ −�z′)

+ exp
[−κ(ωLO/�x ′ + 1)

]+ 1

2
exp

[−κ(ωLO/�x ′ + 1−�z′/�x ′)
]

× 2(ωLO +�x ′ −�z′)
]

(4.3)

where3 = m2D2/2Lyh̄2ρωLO , κ = ω2
c/(�

2
x ′ − ω2

c ), and2(x) denotes a step function.
Since this equation does not depend onk1, we can easily perform thek1-integration in
equation (4.1) and obtainσMPRyy as

σMPRyy = πh̄e2ne

mLy

(
ωc

�x ′

)2

(1− e−βh̄�x′ )2(1− e−βh̄�z′ )
0
(3)
1

(h̄�x ′)2+ (0(3)1 )2
(4.4)

where0(3)1 is given by equation (4.3) andne denotes the electron density in the Q1D/Q2D
system with appropriate dimensions. It should be noted that equation (4.4) along with
equation (4.3) forms the basic equation for the MPR spectral lineshape for analysing MPR
effects in the Q1D/Q2D electronic system under tilted strong magnetic fields.0

(3)
1 plays an

important role in determining the height and width of the MPR peaks as well as their peak
positions.

Figure 1. The dependence on the magnetic field (B) of the magnetoconductivity (σMPRyy ) for
different tilt angles (θ ). (Q2D.)

5. Results and discussion

We have obtained the magnetoconductivity formulaσMPRyy associated with MPR for the
Q2D/Q1D electronic system on the basis of the model described in section 2. By making
use of equation (4.4) along with equation (4.3), the spectral lineshapes forσMPRyy in the
Q2D/Q1D system are plotted in figures 1 and 2 as functions of magnetic fieldB for different
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Figure 2. The dependence on the magnetic field (B) of the magnetoconductivity (σMPRyy ) for
different tilt angles (θ ). (Q1D.)

tilt anglesθ of the transverse tilted magnetic fieldB = (−B sinθ, 0, B cosθ) applied to the
electronic wire/plane. In these figures, we can see the following features for the Q2D/Q1D
system:

(i) there are three peaks inσMPRyy (B);
(ii) with the increase of the tilt angleθ of the applied magnetic field, the peak in the weak

side of the magnetic field, the resonant magnetic fields, shifts to the higher side whereas
the peaks in the middle and the higher side of the field shift to the lower-field side; and

(iii) with the increase of the tilt angleθ , the height of these peaks decreases and their
resonance widths broaden.

Let us first examine feature (i). Since MPR is a phenomenon which occurs in the
electronic system subjected to quantizing magnetic fields, it is sufficient for us to consider
the case where the cyclotron energy always exceeds the energy of a confining potential since
this condition is customarily satisfied under normal operating conditions. Here we assumed
that the energy of a confining potential could not be equal to a LO-phonon energy. Then
there are four possible cases which change0

(3)
1 in equation (4.3) abruptly when we vary

the tilt angleθ of the appliedB-field. Those are the terms with the step functions given
by 2(�x ′ − ωLO), 2(�x ′ − �z′ − ωLO), 2(ωLO − �x ′), and2(ωLO − �x ′ − �z′). The
abrupt change of0(3)1 is expected to occur at the magnetic field for which the relaxation time
changes abruptly. By inspecting equation (4.4) along with equation (4.3), the conditions for
MPR, which give the peak positions (i.e., resonant magnetic fields (Bpeak)) in the spectral
lineshape, are actually given by the following three cases:

�x ′ +�z′ = ωLO �x ′ = ωLO �x ′ −�z′ = ωLO. (5.1)

Here,�x ′ is given by equation (2.6a) and�z′ by equation (2.6b) in which ω1 = 0 should
be taken for the Q2D system. It is clear that the reason that subsidiary peaks appear
(�x ′ ± �z′ = ωLO) is the presence of�z′ in equation (5.1) (unlike in the 3D case) in
σMPRyy (B) for the Q2D/Q1D system. When the applied magnetic field is tilted by an angle
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Figure 3. The dependence on the magnetic field (B) of the electronic energy levels (εn,l,ky≈0).
(Q2D.) The MPR conditions (5.1) are satisfied when the vertical transitions(n, l) = (0, 0) →
(1, 1), (0, 0) → (1, 0), (0, 1) → (1, 1), and (0, 1) → (1, 1) take place via the absorbing of
phonon energy ¯hωLO .

θ , electrons confined inV (x, z) actually ‘feel’ not only the effective confining potential
m�2

x ′(x
′ + x0)

2/2 in thex ′-direction but also the effective confining potentialm�2
z′z
′2/2 in

the z′-direction. In the course of scattering events, the electrons in the effective Landau
and sub-band levels specified by the level indices(n, l) could make transitions to one of
the effective Landau and sub-band levels(n′, l′) by absorbing the LO-phonon energy ¯hωLO
when the conditions (5.1) are satisfied. The first condition indicates processes in which
quasi-electrons having respective energies of ¯h�x ′ and h̄�z′ are created by the absorbing
of a LO phonon with energy ¯hωLO . The second condition indicates a process in which
only a quasi-electron with energy ¯h�x ′ is created by the absorbing of the same phonon
energy. The third condition indicates processes in which, via the absorbing of a LO phonon
with the same energy, a quasi-electron with energy ¯h�x ′ is created and a quasi-electron
with energyh̄�z′ is however annihilated. To see the physics involved in these processes,
for the sake of simplicity, we plotted the electronic energy levels (2.10) (atky ′ ≈ 0) for
the Q2D system, specified by the effective Landau and sub-band level indicesn, l (=0, 1)
as a function of the applied magnetic field (see figure 3). It is evident from a glance at
figure 3 that the first condition in equation (5.1) corresponds to the electronic transition from
(n, l) = (0, 0) to (1, 1) and the second condition corresponds to the electronic transition
either from (0, 0) to (1, 0) or from (0, 1) to (1, 1). The third condition corresponds to
the electronic transition from(0, 1) to (1, 0) effected by absorbing a LO phonon with
energyh̄ωLO . The subsidiary MPR positions for the Q2D case given by the conditions
�x ′ + �z′ = ωLO and�x ′ − �z′ = ωLO essentially correspond to those of Moriet al
(equation (3) in reference [7]) who considered the case in which the magnetic field is applied
perpendicular to the Q2D electronic plane. It should be noted that unlike in the case of MPR
in a 3D electronic system (where only one resonant peak appears at�x ′ ≡ ωc = ωLO when
P = 1) [14–17], an additional two subsidiary peaks will appear at�x ′ ± �z′ = ωLO—in
addition to the central peak specified by�x ′ = ωLO—in the Q2D (also Q1D) electronic
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Figure 4. The dependence on the tilt angle of the MPR conditions given by equations (5.1).
(Q2D.) The intersections of two lines indicatingωLO and�x′ , �x′ ± �z′ give the resonant
magnetic fields (Bpeak), that is, the MPR peak positions.

system due to the presence of the effective confining potentialm�2
z′z
′2/2. The appearance

of these subsidiary peaks in the MPR lineshape seems to be a characteristic feature in Q2D
as well as Q1D electronic systems.

Next we consider feature (ii). The shift of the resonant peaks inσMPRyy (B) for different
tilt angles seen in figures 1 and 2 can be understood in terms of the behaviour of�x ′

and�x ′ ± �z′ as functions of the magnetic fieldB at different tilt angles(θ). Again, we
consider the Q2D case. Figure 4 indicates the variation of those resonant frequencies,�x ′

and�x ′ ±�z′ , at different tilt angles. In this figure, the quantities�x ′ and�x ′ ±�z′ intercept
ωLO at the resonant magnetic field values. In the Q2D system, sinceω1 = 0, �x ′ and�z′
given by equations (2.6a) and (2.6b) become

�x ′ =
√
ω2
c + ω2

2 sin2 θ and �z′ = ω2 cosθ (5.2)

respectively. Therefore, for a given value of magnetic field (i.e.,ωc), it is clear from
equation (5.2) that the magnitude of�x ′ always increases whereas that of�z′ always
decreases with the increase of the tilt angleθ ∈ (0, π/2). This implies that the constraint
on the electron motion (namely, the effective confinement of an electron) in thex ′-direction
becomes stronger whereas that in thez′-direction becomes weaker when the tilt angleθ
increases. Accordingly,�x ′ + �z′ decreases whereas�x ′ and�x ′ − �z′ increase. These
variations due to the increase of the tilt angle can be clearly seen in figure 4 as a shift of
the line indicating�x ′ + �z′ downwards (i.e., to the lower-frequency side) and the lines
indicating�x ′ and�x ′ −�z′ upwards (i.e., to the higher-frequency side). Therefore it can
be understood that the resonant point (Bpeak) for the subsidiary peak on the low-field side
determined from the condition�x ′ + �z′ = ωLO shifts to the corresponding point on the
higher-field side. The resonant points for the central peak given by�x ′ = ωLO and for the
subsidiary peak on the high-field side given by�x ′ −�z′ = ωLO shift to the corresponding
points on the lower-field side when the tilt angleθ is increased. See also figure 5, which
shows the variation of the resonant magnetic field (Bpeak) against the tilt angle (θ ) of the
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Figure 5. The dependence on the tilt angle (θ ) of the resonant magnetic fields (Bpeak). The
solid (dotted) line indicates the Q2D (Q1D) case.

applied magnetic fields in the Q2DEG and the Q1DEG systems. It is clearly seen in this
figure that the shift of each MPR peak (for the resonant magnetic field) in the Q1D case
(dotted line) is smaller than that of the corresponding peaks in the Q2D case (solid line).
This indicates that the tilt-angle dependency on the effective confining-potential frequencies
�x ′ and �z′ in the Q1D system is weakened since these confinement frequencies (see
equations (2.6a), (2.6b)) in the Q1D system are more symmetric (with respect to they-
axis) than their counterparts (see equation (5.2)) in the Q2D system due to the presence of
the confining potentialmω2

1x
2/2. This can be easily understood by considering the special

case for a symmetric quantum wire, where the confining-potential frequenciesω1, ω2 are
given byω1 = ω2 ≡ ω0. Then, equations (2.6a) and (2.6b) are respectively given by

�x ′ =
√
ω2

0 + ω2
c and �z′ = ω0 (5.3)

which donot depend on the tilt angle at all. It is noteworthy that the condition�x ′ = ωLO
(equation (5.2)) for the Q2D system, obtained in this paper, is essentially equivalent to the
MPR condition derived by Vasilopouloset al [10] for a Q1DEG system when their� is
replaced byω2 sinθ .

The feature (iii) can be explained as follows. The height and width of the MPR peaks
seen in figures 1 and 2 are mainly determined by the behaviour of0 since it appears in terms
of the collision broadening due to the electron–phonon interaction and plays the role of the
width in the spectral lineshape [20–22]. Increasing the tilt angle of the applied magnetic
fields further constrains electron motion since the effective confinement becomes tighter in
both Q2D and Q1D systems. Accordingly, we can expect that the frequency of collisions
between electrons and LO phonons increases, resulting in the increase of0. In fact, with
the increase of0, the widths of the MPR spectral lineshape in equation (4.4) become wider
and its heights (magnitude) lower as seen in figures 1 and 2.

So far we have seen the effect of tilted magnetic fields, namely, theθ -dependency of
MPR. Now let us consider the Q1D case, where special attention is paid to the effect of
symmetry (with respect to they-axis) of the quantum wires (or the dimensionality) on MPR.
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Figure 6. The dependence on the magnetic field (B) of the magnetoconductivity (σMPRyy ) for
change of the confining-potential strengthω1 in the x-direction. (Q1D.)

In other words, we consider the effect of electrostatic confining potentials (characterized
by ω1, ω2) on MPR since those MPR peak positions and the MPR lineshapes would be
influenced by the strength of these confining-potential parameters. To simplify the discussion
to see the effect of the strength of the confining potentials on the MPR, we shall consider
the case forθ = 0, where magnetic fields are applied normal to the wire. In this case, the
MPR conditions (5.1) for the confined electrons (Q1DEG) are reduced to√
ω2

1 + ω2
c + ω2 = ωLO

√
ω2

1 + ω2
c = ωLO

√
ω2

1 + ω2
c − ω2 = ωLO (5.4)

respectively. Figure 6 shows the variation ofσMPRyy (B) against the strength of one of the
confining potentials,ω1, for the crossed field configuration(θ = 0) (i.e., magnetic fields are
applied perpendicular to the wire). On increasing the confinement parameterω1 (that is, on
making the confinement tighter in thex-direction), all three MPR peaks shift to the lower-B

side, and the height of these MPR peaks becomes lower and their widths broader as seen
in this figure. This agrees qualitatively with the result of Vasilopouloset al [10] for Q1D
quantum wires modelled in terms of the vertical confinement with a triangular well and the
lateral one with a parabolic potential. The reason that these MPR peaks shift to smaller
magnetic fields (i.e., the lower-field side) is that only the constraint in thex-direction (ω1)
changes. The constraint in thez-direction (ω2) does not change at all in the present case
(see equation (5.4)). Accordingly, in the present case,�z′ (=ω2) does not change but the
effective confinement frequency�x ′ (=

√
ω2

1 + ω2
c ) takes larger values with the increase of

ω1. Therefore, all three MPR peaks given by the conditions (5.4) are expected to shift
to smaller magnetic fields (that is, the lower-B side) as the system becomes more one
dimensional. It should be noted that when the confinement in thez-direction is tighter
(i.e., with the increase ofω2 rather thanω1), the Q2D nature of shifting of the MPR peaks
appears. That is, the subsidiary peak in the lower magnetic fields shifts to the lower-B side
whereas the subsidiary peak in the higher fields shifts to the higher-B side. The central
peak does not shift irrespective of the change inω2, as discussed before.
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We have seen that with the increase of the tilt angle (in the Q2D/Q1D system)
(cf. figures 1, 2, and 5) or with the increase of the constraint in one of the confining potentials
(in the Q1D system) (cf. figure 6), MPR peaks decrease in height and are broadened.
The peak width and height are mainly determined by the Lorentzian spectrum function in
equation (4.5) through the behaviour of0. Since the quantity0 is proportional to the inverse
of the electronic relaxation time, an increase of0 leads to the relaxation time becoming
shorter due to the collisions (scattering). The increase of0, that is, the decrease of the
relaxation time, brought about by tilting the applied magnetic fields and/or by tightening
the confining potential results in the increase in the frequency of the collisions between
electrons and phonons. This is because the electrons are confined in a narrower region
when these constraints are stronger. According to the experimental results of Brummell
et al [4] for Q2D electronic systems, all of the MPR peaks shift to the higher-B side,
their peak heights decrease, and their widths broaden when the tilt angle of the applied
magnetic fields is increased. Therefore our theoretical results for the Q2D case agree
qualitatively with their experimental results as far as the MPR peak heights and their widths
are concerned. However, our theoretical result concerning MPR peak shifting does not
agree with their experimental results. This disagreement may be due to the fact that their
experiment was performed under magnetic fields up to 10 T whereas our calculations were
carried out for magnetic fields of above 15 T, taking into account only the effective Landau
and sub-band states withn = 0, 1 andl = 0, 1. Since the MPR peak on the lower-B side
shifts to the higher-B side even in the present calculations, we might expect the present
theory to reproduce their experimental results qualitatively if we take into account the
electronic transitions up to the second excited levels and obtain the MPR conditions valid
under magnetic fields up to 10 T. So far we are not aware of any relevant experimental
work relating to MPR on the dependence of the tilted magnetic field onσMPRyy for Q1D
electronic systems. It should be noted that our theoretical results are based on a model
with a parabolic confining potential. For usual heterostructures it is well known that
the confinement potential in thez-direction is far from being parabolic, and it is often
approximated as a triangular potential [10, 12]. For a direct comparison with experiments,
realistic modelling with the correct confinement potential would be required. We believe
however that utilizing a model with a parabolic confinement is good enough for extracting
the essential physics of MPR effects in Q2D and Q1D electronic systems in tilted magnetic
fields. In other words, the difference between the energy spectra obtained using quasi-
triangular potentials and parabolic potentials does not alter the essential physics of MPR
effects in Q2D and Q1D electronic systems as far as the fundamental(P = 1) MPR, which
we considered here, is concerned. Finally, we should comment on a possible influence
of electron–electron scattering on MPR. The effect of electron–electron interaction can be
taken into account approximately by dividing the bare interactions by the purely electronic
contribution to the static wave-vector-dependent dielectric constantε(q). Horing [24] has
evaluated this electronic dielectric constant in the random-phase approximation including the
effects of magnetic fields. His result may be expressed asε(q) = ε(1+ λ2(q)/q2), where
ε and λ(q) are the high-frequency dielectric constant and the inverse screening length.
The explicit expression forλ(q) is too cumbersome to give here [25], but the electron–
phonon interactionC(q) in equation (4.2) may be replaced by a screened electron–phonon
interactionC(q) = iDh̄1/2/(2ρωLOV )1/2(1+ λ2(q)/q2), since the inverse screening length
λ(q) depends on the electron densityne, which in general depends on temperatureT and
the magnetic fieldB. Therefore, we would expect the screening to be significant only if
the electron densityne exceeded a critical valuencr(T ,B). In this case, the effects of
electron–electron scattering would be significant, the relaxation rate0

(3)
1 would be changed,
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and the MPR lineshape as well as the MPR linewidth would be affected by electron–electron
scattering.

Despite the above shortcomings of the theory, we believe that the simple model that we
presented captures qualitatively the essential physics of MPR in Q2D and Q1D electronic
systems brought about by the electron confinement due to the electrostatic potentials and
the magnetic confinement on tilting a magnetic field. We hope that new experiments will
test the validity of our prediction.
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Appendix. Diagonalization of equation (2.3)

Let us express equation (2.3) with equation (2.4) as

he = 1

2m
(p2

x ′ + p2
y ′ + p2

z′)+ ωcx ′py ′ +
m

2
(ax ′2+ 2bx ′z′ + cz′2) (A.1)

where a, b, c are given bya = ω2
1 cos2 θ + ω2 sin2 θ + ω2

c , b = (ω2
2 − ω2

1) cosθ sinθ ,
c = ω2

1 sin2 θ + ω2 cos2 θ , respectively. In order to diagonalize (A.1), we would like to
obtain the eigenvalueλ of the matrix

A =
(
a b

b c

)
. (A.2)

The eigenvalue equation is given by

λ2− (a + c)λ+ (ac − b2) = 0. (A.3)

By solving (A.3), we can obtain the eigenvalueλ as

λ = 1

2

{
(a + c)±

√
(a + c)2− 4(ac − b2)

}
= 1

2

{
(ω2

1 + ω2
2 + ω2

c )±
√
(ω2

1 − ω2
2 + ω2

c cos 2θ)2+ ω4
c sin2 2θ

}
≡ �2

±. (A.4)

Utilizing the coordinate transformations{Ry ′(φ)|(x ′, y ′, z′) 7→ (x ′′, y ′′, z′′)} effected by
rotating the coordinatesx ′ and z′ by an angleφ with respect to they ′-axis (= the y ′′-
axis), i.e., (

x ′

y ′

z′

)
=
( cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

)(
x ′′

y ′′

z′′

)
(A.5)

in (A.1), equation (2.3) can be expressed as

he = 1

2m
(p2

x ′′ + p2
y ′′ + p2

z′′)+ ωcpy ′′(x ′′ cosφ − z′′ sinφ)+ m
2
�2
+x
′′2+ m

2
�2
−z
′′2 (A.6)
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where cosφ and sinφ are

cosφ ≡ �2
+ − c√

(�2+ − c)2+ b2
sinφ ≡ b√

(�2+ − c)2+ b2
. (A.7)

Accordingly, the angle of rotationφ is related to the confining-potential parameters as well
as the tilt angleθ of the applied magnetic fieldB:

tanφ = (ω2
2 − ω2

1) sin 2θ

(ω2
1 − ω2

2) cos 2θ + ω2
c +

√
(ω2

1 − ω2
2 + ω2

c cos 2θ)2+ ω4
c sin2 θ

. (A.8)

In the case whereω1, ω2� ωc, equations (A.4) and (A.8) can be approximated as

�2
± '

1

2
{(ω2

1 + ω2
2 + ω2

c )± (ω2
c + ω2

1 cos 2θ − ω2
2 cos 2θ)} (A.9)

and

tanφ ' 0 (A.10)

respectively. From (A.10),φ ' 0. Thus, equation (A.5) expresses identical transformations.
Therefore, equation (A.6) can be expressed by equation (2.5) in the case whereω1, ω2� ωc,
if we notice that�+ → �x ′ and�− → �z′ in (A.6).
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