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Abstract. We have studied the essential physics of magnetophonon resonances (MPR) in quasi-
two-dimensional (Q2D) and quasi-one-dimensional (Q1D) electronic systems brought about by
the electron confinement due to the electrostatic potentials and the magnetic confinement on
tilting a perpendicular magnetic field. Qualitative features of the MPR effects, their physical
origin, and the dimensional crossover between Q2D and Q1D systems associated with the
confining potential in tilted magnetic fields are discussed in detail, on the basis of a simple
model of parabolic confining potentials.

1. Introduction

Recently, the magnetophonon resonance (MPR) effect in low-dimensional systems [1-13]
has received much attention from both the experimental and theoretical points of view, since
the quantization of electron energies in Q2D and Q1D electron gas (EG) systems in the
presence of a high magnetic field is different from that of a bulk (3DEG) system [14-18].
Moreover, a suitably directed magnetic field serves to add an extra confining potential to
the initial electrostatic confinement and causes a dramatic change in the energy spectrum,
leading to so-called hybrid magnetoelectric quantization. As a consequence, one would
expect different behaviour of the MPR effects in such systems from the known MPR effects
in 3DEG systems.

Many of the MPR theories for Q2DEG systems considered the case in which the
magnetic field is applied normal to the Q2D electronic plane [6, 7, 9]. When the confinement
is sufficiently tight and one can neglect the inter-sub-band transitions, the MPR condition
for such Q2D systems is the same as that for a bulk (3D) system, since the two-dimensional
constraint does not influence the cyclotron motion. However, in the case of a Q1D system
[10-13], there exists an additional confining potential in the plane in which the electrons
undergo cyclotron motion. Accordingly, this affects the Landau quantization. Therefore,
MPR conditions in Q1D systems will be different from those in Q2D systems. Moreover,
we can expect that if one applied a magnetic field at an arbitrary angle, a confining potential
would appear in the new plane of the cyclotron motion. Thus we expect that this will affect
the MPR conditions in the Q2D systems as well. Even in the same Q2D system, the
resonance conditions would be different from the tight- and loose-confinement cases. In the
case of a Q1D electronic system, a tilted magnetic field applied to the transverse direction of
the Q1D quantum wire should influence the MPR condition in two ways. Not only are the
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energy spacings between sub-bands affected, but also an additional effective confinement
potential is formed. Moreover, the angle dependence of the MPR in an asymmetric quantum
wire would be different from that in a symmetric quantum wire.

The purpose of the present work is to investigate the MPR effects in Q1D and Q2D
electronic systems in an effort to understand the qualitative behaviour of the MPR effects in
such low-dimensional systems, on the basis of a simple parabolic model for the confinement
potential. We shall derive the conductivity, for the Q1D/Q2D electronic system subjected
to a tilted magnetic field and obtain MPR conditions as a function of the field stréByth
and tilt angle(9) of the applied magnetic fieldB) as well as the strength parameteis (
and/orw,) of the parabolic potentials, which characterize the strength of confinement of the
Q1DEG and Q2DEG. We will investigate how the MPR effects are affected by the constraint
due to the directionality of the applied magnetic fields. This gives an anomalous angular
dependence of the field positions. We examine the dependence of the MPR on the strengths
of the confining potentials (that is, the dimensionality difference between the Q2D and
the Q1D systems). In the formulation of the problem, the single-particle picture has been
used throughout this work, and thus the electron—electron interactions have been ignored.
Although such interactions would be expected to affect the MPR linewidth considerably,
they are not expected to change the overall MPR lineshape. We assume that the interaction
with bulk LO phonons is the dominant scattering mechanism.

The rest of the paper is organized as follows. In section 2, an exactly solvable model
for Q2D and Q1D electronic systems is presented in a unified manner. In section 3, general
formulae for the transverse magnetoconductivify and the relaxation ratE/h are given
and are evaluated for the Q1D/Q2D model system subjected to a tilted magnetic field. We
show that the transverse magnetoconductivity for the Q2D/Q1D system consists of the
usual Drude term arising from the drift motion of electrons, and hopping terms associated
with MPR. In section 4, the relaxation rate, which is closely related to the MPR, is evaluated
for bulk LO-phonon scattering in the Q1D/Q2D EG system. The MPR conditions for the
model systems are given explicitly and the effects of tilted magnetic fields and the confining
potential on the MPR are discussed. Here, special attention is given to the behaviour of
the MPR lineshape, such as the appearance of subsidiary MPR peaks, the shift of these
MPR peaks and a reduction in MPR amplitude. Physical analysis of the theoretical results
obtained is given in section 5. Diagonalization of the Hamiltonian which contains the
crossed term is presented in an appendix.

2. The model for Q2D and Q1D electronic systems in tilted magnetic fields

We consider the transport of an electron gas in a quantum-well structure and a quantum-wire
structure. The Q2D electron gas is assumed to be confined to-th@lane by an ideal
parabolic potentia%mw%z2 whereas the Q1D electron gas is assumed to be further confined
in the x-direction by an additional parabolic potenti]fmwlx2 thus restricting free motion

to the y-axis alone. In the presence of a magnetic field, the one-particle HamiltoAign

for such Q1D/Q2D electrons is expressed in a unified manner by

Ho= o (0 oAV + V(2 1)

where A is a vector potential accounting for a constant magnetic figle V x A, m is
the effective mass, and the confining potentidl, z) is given by

1 1
Vix,z) = Ema)fxz + Emw%zz. (2.2)
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We can see the dimensional crossover between the Q2D and the Q1D electronic systems
(i.e., w1 — 0 for the Q2D electronic system) as well as the difference in the strength
of each confinement on varying the confining-potential parametersa@d/or w;) in
equation (2.2) for the Q1D/Q2D system. We shall consider the case in which the magnetic
field B is applied in the transverse tilt direction to the wire/plane of the conductor:
B = (B,,0,B;,) = (—Bsin6,0, Bcost). Here, the angl® is measured from the-

axis in thex— plane. To simplify the mathematics, we rotate the coordinateand

z by 6 with respect to they-axis so that the components of the appligt field in

the new coordinategx’, y’, z’) can be expressed b§B., By, B,) = (0,0, B), with the
Landau gauged = (A,,A,, A;) = (0, Bx’,0). After the coordinate transformations
{Ry)|(x,y,2) — (x',y' Z)}, the one-particle Hamiltonian (2.1) for those confined
(Q1D/Q2D) electrons subjected to the transverse tilted magnetic field can be expressed
in the new Cartesian coordinatés, y’, ') as

1 ! ! /
He = 5[} + (py + moex)® + p2l1 + V', 2) (2.3)
whereV (x', 7') is given by
Vix',7) = % [(a)f Cog 0 + w3 sint 0)x" + (w? sint 6 4 w3 cog 0)1/2]

+ m(w5 — w?) cosd sindx'z. (2.4)

Here,w. (=eB/m) is the cyclotron frequency. It should be noted that the tilt adgbé the
applied B-field is defined a® = tan (B, /B,) and that the momentum component is a
constant of motion and can be written ps= hk,, wherek, is the quasi-continuous wave
vector of motion parallel to the interfaces (that is, the wire/plane is inytdeection & the
y’-direction). In this way, equation (2.1) along with equation (2.2) can be represented by
two coupled harmonic oscillators as seen in equation (2.3) with equation (2.4). However,
in the usual case in which,, w; < w., we can safely neglect the cross tefmx’z’)

in equation (2.4) (see the appendix). Thus, equation (2.3) with equation (2.4) can be
approximated as

2 2 2
Py ms2 . 2, Pz m_o o Py
H, = —* + -Qf —Qf — 2.5
2m+2x()c+xo)+2m+2zz +% (2.5)
whereQ,, and 2, are respectively given by
Q= \/w% co2 6 + w2 Sinf 0 + w? (2.68)
Q. = \Jo?sif 0 + wicogo (2.60)
and a renormalized effective masis given by
w2\
m= m<1 - Q;) . 2.7)

The Hamiltonian (2.5) expressed in the new Cartesian coordinates is basically the
Hamiltonian for two independent 1D simple harmonic oscillators, one with the effective
(renormalized) cyclotron frequency,- in the x’-direction and the other with the effective
confinement (sub-band) frequen€y in the z’-direction. In other words, those confined
(Q1D/Q2D) electrons feel the effective potentia2? (x’ + x0)2/2 + mQZz%/2, wherexq
is given by

wepy _ hacky

= — = . 2.8
o me mQ)zc (2.8)
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The last term in equation (2.5) representstiomponent of the kinetic energy of a confined
electron but with a field-dependent renormalized massith respect to the effective mass
m. Due to the presence of the confining potentials and/or the tilted magnetic field, the
effective massn is increased by a factaqd — w?/2)~1, which depends on a tilt angg
the cyclotron frequencw,, and the confining-potential parametéts;, w,) characterizing
the dimensionality of the system.

The normalized eigenfunctions and eigenenergies of the one-electron Hamiltonian (2.5)
are given by

/ !’ 1 / ik y' /
trie) = by sim b g = e + 208" 1 (2)) (2.9)
y
and
1\ 1\ h2k?
Ea = Enlk, = (n + §>th + <l + §>h9~ + 2’;1 n,l=012,... (2.10)

respectively. In equation (2.9, (x’ +xo) andg;(z’) denote 1D simple-harmonic-oscillator
wave functions with centres of the oscillationdt= —xo andz’ = 0, respectively, given

by
, 1 x'+x 1/x +x0\°
n(x +x0):\/n1/22”n!lx/H"( I 0) exp[_é( I 0)} (2.113)
1 7 1/7\?
w(Z) = /—7'[1/221“11/7—{1<E> exp[—é(a) } (2.11b)

where H,,(x) denotes a Hermite polynomial [19], = A/mQ, andl, = Jh/mS,.

The states of the Q1D/Q2D system are specified by two indicésand the wave vector

ky (=k, = py/h), which govern the full energy spectrum given in equation (2.10). The
wave function exfik,y) in equation (2.9) expresses a free motion in thdirection (i.e.,

the y’-direction). The dimensions of the sample are assumed t& be L,L,L,. As
shown in equation (2.10), the energy spectrum for the present Q1D and Q2D systems
is hybrid quantized due to the presence of the tilted magnetic field and the electrostatic
confining potential (2.2). The set of quantum numbers is designate@t,dyk,), where

n and/ denote the effective Landau (magnetic) and sub-band (electrostatic) level indices,
respectively. We note that the dimensional crossover can be seen in the energy spectrum
by simply varying the confining-potential parametears;— 0 for the Q2DEG system and

w1, wp — 0 for the 3DEG system. It is interesting that the dependence of the energy
spectrum in equation (2.10) on the confining-potential paramétersw,), the magnetic

field direction (9), and the magnitude of the applied magnetic fieR) has an important
effect on the MPR effects for the Q1D/Q2D electronic system.

In the following treatment, we assume that the vibrational (phonon) spectra in the
Q1D/Q2D system are identical with those in a bulk material, i.e., that the phonons, to
a first approximation, are not affected by the heterojunctions forming quantum-wire and
guantum-well structures. Deviations from this bulk behaviour, such as interface modes or
slab modes, are neglected. The electron—phonon interaction Hamiltonian is then generally
expressed by [20-22]

Ho_pn = Y [vq(r)bg + v (r)b]] (2.12)
q
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whereb, andbjl are, respectively, the annihilation and creation operators for phonons with
wave vectorg and energyiwg, and the single-electron interaction operaggtr), which
should be defined in terms of the matrix elements referring to electron states, is given by

vq(r) = C(q) exp(ig - ). (2.13)
Here,C(q) is the Fourier transform of the electron—phonon interaction potential.

3. Magnetoconductivity associated with relaxation rates

In this section, an analytical expression of the transverse dc magnetocondugfijvityr

the model systems described in the previous section is developed by using the Kubo-
type formula for a non-linear dc conductivity obtained previously [21]. For weak electric
fields E = Eg and weak interaction potentials, the Kubo-type formula for the non-linear
conductivity o,,(E) (equation (3.18) of reference [21]) for an electron—phonon system is
reduced to

h . : Jf(e1) — f(e2) [12
+(0) = — Al jslA2) (Aol jir | A ’
0,4(0) VMZM< thishalhalirbia) == =

(r,s =x,y,2).

(3.1)

Here, V is the volume, f(g;) is a Fermi-Dirac distribution function for electrons with
energye; associated with the statg;), 7 is the Planck constant divided byr2and j, is
ther-component of a single-electron current opergtet —(e/m)(p+eA), —e (<0) being

the electron charge. The quantify , is associated with electronic transitions between the
states|A1) and |1,) effected by absorbing and/or emitting a phonon with an enétgy,

and plays the role of the width (collision broadening) in the spectral lineshapeI'The

in equation (3.1) is evaluated from the general expression for the electric-field-dependent
I'12(E) given by equation (3.1 of reference [21]. For a weak electron—phonon interaction
and in the limit of weak electric fields, the expression is

Pz =7 Y > [(Ng + D{I0alvalia) 25(es, — ex, — Tiwg) + aaly] 120

q A3

X 8(e35 — e1, +Trog) | + No{ 1002l 130} 23 es, — e, + )

+ 1 0alyglra) (s, — e, — Trog) | (32)

whereN, (=[exp(Bha,) —1]71) is the Planck distribution function for phonons with energy
hwq (g being a 3D wave vector of phonong),= 1/kgT (kg being Boltzmann's constant,
T the phonon temperature), is a single-electron—phonon interaction operator given by
equation (2.13), and, is the eigenenergy of an electron in the state It should be noted
that equation (3.1) along with equation (3.2) is equivalent to the well-known Kubo formula
for an electrical conductivity in an electron—phonon system [20, 22].

To calculate the transverse magnetoconductiwityfor the present model systems, we
need the matrix elements of thecomponent single-electron current operatgr,(=j,),
which is given in the new coordinates by

e e ,
Jy = ——(py +eAy) = ——(py +eBx’). (3.3)
m m

In the representation (2.9), we obtain the matrix elements/’, &}, |jyIn, L, ky)|? as

R ehky \? (21 \?
|<n 7l ’ ky/|J)"|n’ lv ky’)lz = <_y> (L_> Sn’,nal’,la(k)" - k;’)

m y
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(ew ly)?
2

By making use of equations (3.1) and (3.4), the transverse magnetoconducfivir the
present model systems can be expressed as

4% e2h%k2 ezwflf,

Oyy = VLZ |: L Snz nl 2 {nlanz,nl—l + (l’lj_ + 1)8n2.n1+1}:| 812,11

Yy o,

2
<L ) (180 n—1+ (1 + D)8y n11]8r 18 (ky — k). (3.4)

fle1) — f(e2) T
&2 — €1 (61 — €2)2 + Fiz

where the notatiork; (=k;,y) has been used, and the Fermi-Dirac distribution function
f (&) is associated with the eigenstdig) in equation (2.9) with its eigenenergy given

by equation (2.10). Th&;, in equation (3.5) can be calculated from equation (3.2) for the
present model systems. The matrix elementg0&nd qu are respectively found with the
use of the representation (2.9) to be

x 8(k1 — k2)

(3.5)

2 2
(0 1 K lygln, 1, ky) P = (L—”) 1C(@ 1P| T ) 1P| T 1 (0) P8 gy + ky — K},) (3.69)

y
/ I 27[ 2 /
[ U K lydIn, L k)| = (L—) 1C@ T n W) P T (0)8(qy — ky +K,)  (3.60)
,

where|J, ,(u)|?> and|Jy,(v)|? are respectively given by

|
[Torn @I = 25 (L) ) (3.7a)
|
[T @) = =& o LT @) (3.1)
Here,u, v are given byu = 3{I *(xo — x()? + 1242} andv = 31242, respectively. In

equations (3.4), (3.7), L (x) denotes a Laguerre polynomial [19}, = max|[n, n'],
n. = min[n,n’], I. = max[,!'], and/. = min[l,!']. By making use of equations (3§
(3.60), and (2.10) in equation (3.2), we obtain the, in equation (3.5) as

—nZZ( )|C<q)|2{<zv + 1) || Fuans 42| | Tie ) 8y + ks
— ko)8[(n1 — na)Qy + (Iy — l)AQ + R2(K2 — k2) /2 — hiwg]

| T @] | Tt ) |? (= + k1 — k3)
x 8[(n3 — n2)h + (I3 — IhQy + R2(K2 — k2) /211 + l_la)q]]}

2
+try] AZ(;y)C(q)F [N [|F0ans 2| | T 6~y + k3
q 3

— k2)8[(n1 — na)A Ry + (lh — l3)RS2 4 B2 (k? — k3) /21 + havg)
| Tngns @) [* | Tt )] 8 gy + k1 — ko)
x 8[(na — n) + (I3 — [ +R2(K2 — k) /2 — l_za)q]]} (3.8)

whereu; andu, are respectively given by

—[l;z(xl —x3)% + lf,qf/]

u1:2
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and
1
Up = E[Z;Z(XZ — X3)2 + lf/qff]

with x; = Tzk,-wc/mszi,. Since we are dealing with the Q1D/Q2DEG formed in the
heterointerfaces of semiconductors, the electron density of such systems is customarily
very low. In the high-temperature or the non-degenerate ligip[8’ (¢, — n)] > 1) for

those confined free electrons, the Fermi—Dirac distribution functipgs) (=f(sy,)) in
equation (3.5) can be approximated as a Boltzmann distribution function:

flea) ~ AexpB'(n—e0)| (3.9)

Here, u denotes the Fermi energy amd = 1/kzT’, T’ being the electron temperature.
Note that7’ = T (B8’ = B) holds for the present case since it is assumed that the Q1D/Q2D
electronic system is subjected to a weak electric field. The normalization constent
determined from

Ne= 3 s = fdk i)

(N, being the total number of eIectrons in the system) and is given by
_ (27B)Y?N{1 — exp[-RQ. {1 — exp[-h<2.]}
a Ly 2 explf(n — hS2 /2 — h2/2)]

Utilizing equations (3.8) and (3.9) in equation (3.5) and carrying outtthgummation (i.e.,
Dowr = Doy Zkz) by converting

/ ks
I’lz I

the conduct|V|ty formula (3.5) for the Q1D/Q2D electronic system can be written as

2 2,3 2[2
Oyy = /dkl klf(sal) Z/

Vl1 I

(3.%)

% AePU-h, //Z—Ter/Z)e—ﬂnlﬁﬂxr 1- e,smx,)e—,szlm, — BR2K2 /21
2
I'y /dkl € wclx € Wby f BT /2-72.1/2)
2
* e, >2+<F( e o

®
1_‘1

« e Bnih l—e B, <) e~ BlLhQ, e —Bh%k2 /21 (310)

(R2)? + (IY)2
where A is given by equation (38. I‘(D F(z) F(3) are respectively given by

==y ) f dlk L—|C(q>|2<zvq + D1 Trgna WD 1T 1 (028 (qy + ks

q nzl3

— k)8[(n1 — n)h Qe + (11 — [)hQ + B2 (k5 — k3) /2 — hvg]
4
+ry > / dks L—y|C<q)|2Nq|Jn1,n3(u1>|2|J,1,,3<v>|26<qyf +ka

q nzl3

— ka)8[(n3 — n)RQ + (I3 — DA, + R2(k2 — k2) /2 — haowy] (3.11)
2
rP ==y > f dls Z1C@ PNy + D[ 1105 0PI T 1o (0) 28(g +
;

q nzl3
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— k1)8[(n1 — na)A Ry + (I — l)RS2, 4+ B2 (k2 — k3) /2 — havg)
+ | Tngons @D P Trg 1, 0) 28 (—qy + k1 — k)
% 8[(n3 — ny+ DAy + (s — [y + K22 — k2) /21 + qu]]

2
rr > [ PO [V ASPCATEE ARDIEIEVRRRS

q ns,l3
— k1)8[(n1 — na)A Ry + (I — l)RS2, 4+ R2(k? — k3) /21 + havg)
A+ 1T s W) P Ty 15 (128 (qy + k1 — k)
x 8[(ng —n1 + DRAQ + (s — 1A, +h2 (k5 — k?) /2w — ﬁwq]] (3.12)

2
rf ==Y / dks L—’f|C(q>|2<Nq + 1)[Unﬁlm(ul)|2|le,13<v)|2a<qy/ + k3

q nzl3
— k1)8[(n1 — n)AQ + (I — )R + R2(k3 — k3) /2 — hawy]
+ [ Trnauns 1) P Ty W18 (— gy + k1 — k)
% 8[(n3 — n1 — DAy + (s — [y + K22 — k2) /21 + qu]]

2
DD f ks L—’Z|c<q>|2Nq[|Jm+1.n3<u1)|2|Jz1,13<v>|28<—qy + ks

q nzl3
— k1)8[(n1 — na)A Ry + (I — [3)RS2, 4+ R2(k? — k3) /21 + havg)
+ [T UD P Tt (0) P8 (qy + k1 — ka)
x 8[(ng —n1 — DIAQ + (I3 — 1A, + W2 (k5 — k?) /2w — qu]]. (3.13)

In equation (3.10), the first term expresses Dride term arising from the drift (non-
hopping) motion of electrons within the localized states through the electron—phonon
interaction. In contrast, the second and the third terms expredsoph@ngterms, which

are associated with electron hopping motion between the localized (effective Landau and/or
sub-band) states effected by absorbing and/or emitting a phonon with an eneygn

the scattering events. In fact, these terms are related to the oscillatory behaviour of MPR
effects. Accordingly, we shall denote the transverse magnetoconductivity associated with
these hopping terms a:@‘f,” hereafter. In the next section, we shall analyse it in detail in
order to get insight into MPR effects in the Q1D and the Q2D electronic systems.

4. Magnetophonon resonances in tilted magnetic fields

Let us consider the case where the applied magnetic (#8)dis so large that the cyclotron
energyhw, is sufficiently larger than the temperatu¢€) of the system. In the high-
temperature (or the non-degenerate limit) and the high-quantum lmajt > k3 T), only

one or two magnetic sub-bands (namely, effective Landau levels) are customarily occupied.
Accordingly, it may be sufficient for us to consider the electronic transitions between
the states specified by, = 0,1 and/; = 0,1 (i = 1, 2) in equation (3.5) or (3.10)

for the fundamental MPR. When the electrons are in the lowest effective Landau level
(namely, whenn; = 0), the term withs,, ,,—1 in the conductivity (3.5) becomes zero
due to the selection rule (3.4), and does not contribute to the conductivity. Therefore, the
conductivity formula (3.5) and hence (3.10) associated with MPR for the Q1D/Q2DEG can
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be expressed by

3
MPR _ —/dkl wely Aeﬁ(u —hQy [2-RQ, 2~ 1kz/zm)(l e phay Iy

(A2)2 + (IY)?
(4.1)
where after carrying out this-integration in equation (3.13)“,f’) is given by

Y = 3 3 @t/L)IC@PNg + D[ 1101 o, () 28]k — 150

q nszls3

— W%(q% — 2kagy) /2 — hg] + | Ton )P Tr.0(0)18[ (13 — DAL,
+ 1R + (g2 — 2Kigy) /20 + Tl | +7 ) D (@/L,)IC(@)

q nzl3
x Nq[Ul,ns(u)|2|jo.13(v>|25[—n3mxf — 137 Qs — R2(g5 + 2Kkaqy) /2
+ hwg) + | Tons )P Toss(0)1?8[(n3 — DAQ + 15h Q.
+ (g + 2kaqy) /2 — o] |. (4.2)

Hereu, v are given byu = 12 (0Zq%/ Q2 + q%)/2 andv = 1247 /2, respectively. To obtain
equations (4.1) and (4.2), we took into account that 0,1 (f = 1, 2) for the effective
(electrostatic) sub-band states in the evaluation of equation (3.5) along with equation (3.8).
Since we are considering the MPR effects, where electrons are scattered by LO phonons,
we may putw, = wr o (~constant), wherev, o is the LO-phonon frequency. Here, we
assume that the phonons are dispersionless and bulk (three dimensional). Accordingly, the
Planck distribution functionV, should be replaced by, = [exp(Bhwio) — 1]71 and the
Fourier component of the interaction potenti@l(q)|?> will be replaced byhD?/2pw; oV

for LO-phonon scattering as was done by several authors [6, 12, 23]. Hésethe bulk
density andD is a constant with energy dimensions. In the evaluation of equation (4.2) for
bulk LO phonons, we consider the case wheyes> k; since the maximum of the density

of states appears &t = 0 and so we can set

h?(q5 + 2kiqy)/2m ~ h?q5 /2

in the calculation ofr‘f‘) as an approximation as did Moet al [11]. By converting the
sum overgq into integrals according to the usual prescription

\%
> s | [ [ a0 e

q

in equation (4.2), the equation f(ﬂ*f) can be analytically evaluated as

Q a2, 2y
MY~ A — @ (No+1)[exp[ k(L= wro/Q)] Qv — wL0)

1
+t5 exp[—k(1— Q. / Qv — wro/ Q)] Oy — Q. — wLO):|

Q2 Q0

QZ
+ exp[—(@Lo/ R — /)] (k(@L0/ R — R/ R0) +1/2)

X OLo — 2+ exp[—k(@Lo/ R — D] (3/2— k(@Lo/ — D)

+ A N0|:2 eXp[ Ka)Lo/Qx/] (KCL)Lo/Qx/ + 1/2)
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X O(wLo — Q) + exp[—k(wLo/Qw — 1 — Q/Qy) ]

x (14— K(@L0/Q = 1= 2/20)/2)O(@10 — Ry — 2)

+ exp[—k(wro/Qv + 1] + %exp[—x(ww/ﬂx/ +1-Q./Q0)]

X Owro + Qv — szz/)} (4.3)
where A = m?D?/2L,i?pwro, k = ?/(Q? — »?), and ©(x) denotes a step function.

Since this equation does not depend ian we can easily perform thé;-integration in
equation (4.1) and obtaim/ "% as

mhe?n, [ we \? FQ 2 T Ff)
oMPR = —— < (1—e P21 —efd) ——L (4.4)
¥y mLy, \Qu (72,2 + (I'¥)2

Wherel‘(f) is given by equation (4.3) and, denotes the electron density in the Q1D/Q2D
system with appropriate dimensions. It should be noted that equation (4.4) along with
equation (4.3) forms the basic equation for the MPR spectral lineshape for analysing MPR
effects in the Q1D/Q2D electronic system under tilted strong magnetic fiEﬁa)spIays an
important role in determining the height and width of the MPR peaks as well as their peak
positions.

—— 6 =10[deg] w2 =10.0[meV]
...... 6 =30 Wy =0.0[meV]
................ g =45 T=200[K]
g |—-— 6 =60
c
=3
2
5,
[and 1
o :
= 0
© ]
i |
J« e «!';J b:u \.’\\3::&*
I ! 1 t i S | 1 t 1 1 L
15 20 25
B[T]

Figure 1. The dependence on the magnetic fieR) of the magnetoconductivitys(’! %) for
different tilt angles €). (Q2D.)

5. Results and discussion

We have obtained the magnetoconductivity formafd”* associated with MPR for the
Q2D/Q1D electronic system on the basis of the model described in section 2. By making
use of equation (4.4) along with equation (4.3), the spectral Iineshapea’,‘ffﬁ? in the
Q2D/Q1D system are plotted in figures 1 and 2 as functions of magnetidsfitdddifferent
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Figure 2. The dependence on the magnetic fieR) of the magnetoconductivityag‘f”) for
different tilt angles §). (Q1D.)

tilt angleso of the transverse tilted magnetic fiel8l = (— B siné, 0, B cosd) applied to the
electronic wire/plane. In these figures, we can see the following features for the Q2D/Q1D
system:

(i) there are three peaks i/ "*(B);

(i) with the increase of the tilt angk of the applied magnetic field, the peak in the weak
side of the magnetic field, the resonant magnetic fields, shifts to the higher side whereas
the peaks in the middle and the higher side of the field shift to the lower-field side; and

(i) with the increase of the tilt anglé, the height of these peaks decreases and their
resonance widths broaden.

Let us first examine feature (i). Since MPR is a phenomenon which occurs in the
electronic system subjected to quantizing magnetic fields, it is sufficient for us to consider
the case where the cyclotron energy always exceeds the energy of a confining potential since
this condition is customarily satisfied under normal operating conditions. Here we assumed
that the energy of a confining potential could not be equal to a LO-phonon energy. Then
there are four possible cases which chamfé in equation (4.3) abruptly when we vary
the tilt angleé of the appliedB-field. Those are the terms with the step functions given
by ©(Qv — wro), O(Qv — Qr — wr0), Olwro — Qv), aNdO(wro — Qv — Q). The
abrupt change dl”f') is expected to occur at the magnetic field for which the relaxation time
changes abruptly. By inspecting equation (4.4) along with equation (4.3), the conditions for
MPR, which give the peak positions (i.e., resonant magnetic figdgs,()) in the spectral
lineshape, are actually given by the following three cases:

Qv+ Qy =wro Q= wro Qu —Qy =wro. (5.1)

Here, Q. is given by equation (24 and 2, by equation (2.6) in which w; = 0 should

be taken for the Q2D system. It is clear that the reason that subsidiary peaks appear
(2 £ Q, = wrp) is the presence of2, in equation (5.1) (unlike in the 3D case) in

o IP*(B) for the Q2D/Q1D system. When the applied magnetic field is tilted by an angle
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Figure 3. The dependence on the magnetic fiel) of the electronic energy levels,(; x,~o).
(Q2D.) The MPR conditions (5.1) are satisfied when the vertical transitionis = (0, 0) —
1,1, (0,00 > (1,0, (0,1) - (1,1), and(0,1) — (1,1) take place via the absorbing of
phonon energyiwr o .

0, electrons confined itV (x, z) actually ‘feel’ not only the effective confining potential
mQ2 (x' + x0)%/2 in thex'-direction but also the effective confining potentiaf2?z'2/2 in

the z’-direction. In the course of scattering events, the electrons in the effective Landau
and sub-band levels specified by the level indi¢ed) could make transitions to one of

the effective Landau and sub-band levels (') by absorbing the LO-phonon energiy; o

when the conditions (5.1) are satisfied. The first condition indicates processes in which
guasi-electrons having respective energie®@f and/<, are created by the absorbing

of a LO phonon with energyiw;o. The second condition indicates a process in which
only a quasi-electron with energy, is created by the absorbing of the same phonon
energy. The third condition indicates processes in which, via the absorbing of a LO phonon
with the same energy, a quasi-electron with energy is created and a quasi-electron
with energyh 2, is however annihilated. To see the physics involved in these processes,
for the sake of simplicity, we plotted the electronic energy levels (2.10k,(a#> 0) for

the Q2D system, specified by the effective Landau and sub-band level indic€s-0, 1)

as a function of the applied magnetic field (see figure 3). It is evident from a glance at
figure 3 that the first condition in equation (5.1) corresponds to the electronic transition from
(n,1) = (0,0) to (1,1) and the second condition corresponds to the electronic transition
either from (0, 0) to (1,0) or from (0, 1) to (1,1). The third condition corresponds to

the electronic transition from0, 1) to (1, 0) effected by absorbing a LO phonon with
energyhwro. The subsidiary MPR positions for the Q2D case given by the conditions
Qv+ Qy = w0 and Qy — Q, = wrp essentially correspond to those of Mat al
(equation (3) in reference [7]) who considered the case in which the magnetic field is applied
perpendicular to the Q2D electronic plane. It should be noted that unlike in the case of MPR
in a 3D electronic system (where only one resonant peak appefrs atw. = w; o when

P = 1) [14-17], an additional two subsidiary peaks will appeafat+ Q, = w;o—in
addition to the central peak specified B = w;o—in the Q2D (also Q1D) electronic
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Figure 4. The dependence on the tilt angle of the MPR conditions given by equations (5.1).
(Q2D.) The intersections of two lines indicating.o and 2/, 2,7 £ Q. give the resonant
magpnetic fields B,..), that is, the MPR peak positions.

system due to the presence of the effective confining potenmﬁz/z/z. The appearance
of these subsidiary peaks in the MPR lineshape seems to be a characteristic feature in Q2D
as well as Q1D electronic systems.

Next we consider feature (ii). The shift of the resonant peaks'{i* (B) for different
tilt angles seen in figures 1 and 2 can be understood in terms of the behaviéty of
and @, + @, as functions of the magnetic field at different tilt angleg#). Again, we
consider the Q2D case. Figure 4 indicates the variation of those resonant frequencies,
andQ, +Q,, at different tilt angles. In this figure, the quantiti®s and2,. + . intercept
wy o at the resonant magnetic field values. In the Q2D system, siee 0, 2, and 2,
given by equations (24§ and (2.®) become

Qy = /w2 + wZsinte and Q. = wy cosh (5.2)

respectively. Therefore, for a given value of magnetic field (i), it is clear from
equation (5.2) that the magnitude &f, always increases whereas that @f always
decreases with the increase of the tilt angle (0, 7/2). This implies that the constraint
on the electron motion (namely, the effective confinement of an electron) irfthieection
becomes stronger whereas that in thelirection becomes weaker when the tilt angle
increases. Accordingly2, + 2, decreases whereds,, and Q,, — Q. increase. These
variations due to the increase of the tilt angle can be clearly seen in figure 4 as a shift of
the line indicating2,» + €, downwards (i.e., to the lower-frequency side) and the lines
indicating 2,» and @, — 2, upwards (i.e., to the higher-frequency side). Therefore it can
be understood that the resonant poiBf.) for the subsidiary peak on the low-field side
determined from the conditio,. + 2, = wpo shifts to the corresponding point on the
higher-field side. The resonant points for the central peak givef by= w; o and for the
subsidiary peak on the high-field side givenQy — Q. = w; o shift to the corresponding
points on the lower-field side when the tilt anglds increased. See also figure 5, which
shows the variation of the resonant magnetic fidy.{) against the tilt angled) of the
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Figure 5. The dependence on the tilt angi®) (of the resonant magnetic field8 (). The
solid (dotted) line indicates the Q2D (Q1D) case.

applied magnetic fields in the Q2DEG and the Q1DEG systems. It is clearly seen in this
figure that the shift of each MPR peak (for the resonant magnetic field) in the Q1D case
(dotted line) is smaller than that of the corresponding peaks in the Q2D case (solid line).
This indicates that the tilt-angle dependency on the effective confining-potential frequencies
Q. and . in the Q1D system is weakened since these confinement frequencies (see
equations (2.6), (2.6)) in the Q1D system are more symmetric (with respect tothe

axis) than their counterparts (see equation (5.2)) in the Q2D system due to the presence of
the confining potentiatiw?x2/2. This can be easily understood by considering the special
case for a symmetric quantum wire, where the confining-potential frequengjes, are

given byw; = wy = wp. Then, equations (24 and (2.%) are respectively given by

Q. = \/m and Q. = wp (5.3

which donot depend on the tilt angle at all. It is noteworthy that the conditiph= w; o
(equation (5.2)) for the Q2D system, obtained in this paper, is essentially equivalent to the
MPR condition derived by Vasilopoulost al [10] for a Q1DEG system when thefe is
replaced byw, sing.

The feature (i) can be explained as follows. The height and width of the MPR peaks
seen in figures 1 and 2 are mainly determined by the behaviduisefce it appears in terms
of the collision broadening due to the electron—phonon interaction and plays the role of the
width in the spectral lineshape [20-22]. Increasing the tilt angle of the applied magnetic
fields further constrains electron motion since the effective confinement becomes tighter in
both Q2D and Q1D systems. Accordingly, we can expect that the frequency of collisions
between electrons and LO phonons increases, resulting in the incre&iselmffact, with
the increase of, the widths of the MPR spectral lineshape in equation (4.4) become wider
and its heights (magnitude) lower as seen in figures 1 and 2.

So far we have seen the effect of tilted magnetic fields, namelydthependency of
MPR. Now let us consider the Q1D case, where special attention is paid to the effect of
symmetry (with respect to the-axis) of the quantum wires (or the dimensionality) on MPR.
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Figure 6. The dependence on the magnetic fieR) of the magnetoconductivitys(* %) for
change of the confining-potential strength in the x-direction. (Q1D.)

In other words, we consider the effect of electrostatic confining potentials (characterized
by w1, ;) on MPR since those MPR peak positions and the MPR lineshapes would be
influenced by the strength of these confining-potential parameters. To simplify the discussion
to see the effect of the strength of the confining potentials on the MPR, we shall consider
the case fop = 0, where magnetic fields are applied normal to the wire. In this case, the
MPR conditions (5.1) for the confined electrons (Q1DEG) are reduced to

Vo + @02+ wp = wp0 Vo2 + w2 =wLo Vo 4+ 02 —wp; = wp0 (5.4)

respectively. Figure 6 shows the variationaqf ”*(B) against the strength of one of the
confining potentialse, for the crossed field configuratiad = 0) (i.e., magnetic fields are
applied perpendicular to the wire). On increasing the confinement parametivat is, on
making the confinement tighter in thedirection), all three MPR peaks shift to the lowgr-

side, and the height of these MPR peaks becomes lower and their widths broader as seen
in this figure. This agrees qualitatively with the result of Vasilopowdosl [10] for Q1D
guantum wires modelled in terms of the vertical confinement with a triangular well and the
lateral one with a parabolic potential. The reason that these MPR peaks shift to smaller
magnetic fields (i.e., the lower-field side) is that only the constraint inct@ection ;)
changes. The constraint in thedirection ;) does not change at all in the present case
(see equation (5.4)). Accordingly, in the present case,(=w,) does not change but the
effective confinement frequencay, (=vw? + »?) takes larger values with the increase of
w;. Therefore, all three MPR peaks given by the conditions (5.4) are expected to shift
to smaller magnetic fields (that is, the lowBrside) as the system becomes more one
dimensional. It should be noted that when the confinement inzttigection is tighter

(i.e., with the increase ab, rather tharnw,), the Q2D nature of shifting of the MPR peaks
appears. That is, the subsidiary peak in the lower magnetic fields shifts to the Boside-
whereas the subsidiary peak in the higher fields shifts to the highgide. The central

peak does not shift irrespective of the changajn as discussed before.
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We have seen that with the increase of the tilt angle (in the Q2D/Q1D system)
(cf. figures 1, 2, and 5) or with the increase of the constraint in one of the confining potentials
(in the Q1D system) (cf. figure 6), MPR peaks decrease in height and are broadened.
The peak width and height are mainly determined by the Lorentzian spectrum function in
equation (4.5) through the behaviourlof Since the quantity is proportional to the inverse
of the electronic relaxation time, an increaselbfeads to the relaxation time becoming
shorter due to the collisions (scattering). The increasé€ othat is, the decrease of the
relaxation time, brought about by tilting the applied magnetic fields and/or by tightening
the confining potential results in the increase in the frequency of the collisions between
electrons and phonons. This is because the electrons are confined in a narrower region
when these constraints are stronger. According to the experimental results of Brummell
et al [4] for Q2D electronic systems, all of the MPR peaks shift to the higheside,
their peak heights decrease, and their widths broaden when the tilt angle of the applied
magnetic fields is increased. Therefore our theoretical results for the Q2D case agree
qualitatively with their experimental results as far as the MPR peak heights and their widths
are concerned. However, our theoretical result concerning MPR peak shifting does not
agree with their experimental results. This disagreement may be due to the fact that their
experiment was performed under magnetic fields up to 10 T whereas our calculations were
carried out for magnetic fields of above 15 T, taking into account only the effective Landau
and sub-band states with= 0, 1 and/ = 0, 1. Since the MPR peak on the lowsrside
shifts to the highem’ side even in the present calculations, we might expect the present
theory to reproduce their experimental results qualitatively if we take into account the
electronic transitions up to the second excited levels and obtain the MPR conditions valid
under magnetic fields up to 10 T. So far we are not aware of any relevant experimental
work relating to MPR on the dependence of the tilted magnetic field §i* for Q1D
electronic systems. It should be noted that our theoretical results are based on a model
with a parabolic confining potential. For usual heterostructures it is well known that
the confinement potential in thedirection is far from being parabolic, and it is often
approximated as a triangular potential [10, 12]. For a direct comparison with experiments,
realistic modelling with the correct confinement potential would be required. We believe
however that utilizing a model with a parabolic confinement is good enough for extracting
the essential physics of MPR effects in Q2D and Q1D electronic systems in tilted magnetic
fields. In other words, the difference between the energy spectra obtained using quasi-
triangular potentials and parabolic potentials does not alter the essential physics of MPR
effects in Q2D and Q1D electronic systems as far as the fundaméhtall) MPR, which
we considered here, is concerned. Finally, we should comment on a possible influence
of electron—electron scattering on MPR. The effect of electron—electron interaction can be
taken into account approximately by dividing the bare interactions by the purely electronic
contribution to the static wave-vector-dependent dielectric consi@)t Horing [24] has
evaluated this electronic dielectric constant in the random-phase approximation including the
effects of magnetic fields. His result may be expresseé(@s= (1 + 1%(q)/q?), where
€ and A(q) are the high-frequency dielectric constant and the inverse screening length.
The explicit expression fok(q) is too cumbersome to give here [25], but the electron—
phonon interactiorC(q) in equation (4.2) may be replaced by a screened electron—phonon
interactionC(q) = iDRY?/(2pw.o V)Y2(1+ 22(qg) /¢?), since the inverse screening length
A(q) depends on the electron density, which in general depends on temperatiirend
the magnetic fieldB. Therefore, we would expect the screening to be significant only if
the electron density:, exceeded a critical value.. (T, B). In this case, the effects of
electron—electron scattering would be significant, the relaxatiomﬁ)cavould be changed,
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and the MPR lineshape as well as the MPR linewidth would be affected by electron—electron
scattering.

Despite the above shortcomings of the theory, we believe that the simple model that we
presented captures qualitatively the essential physics of MPR in Q2D and Q1D electronic
systems brought about by the electron confinement due to the electrostatic potentials and
the magnetic confinement on tilting a magnetic field. We hope that new experiments will
test the validity of our prediction.
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Appendix. Diagonalization of equation (2.3)

Let us express equation (2.3) with equation (2.4) as

1 m
he = 5—(P% + Py + P2) + 0cx py + S (ax? + 2bx'7 + ) (A1)

wherea, b, ¢ are given bya = »?co$6 + wySif + w?, b = (w2 — w?) cosh sind,

c = a)f Sirf 6 + w, co 0, respectively. In order to diagonalize (A.1), we would like to
obtain the eigenvalug of the matrix

A=<Z ZZ) (A2)

The eigenvalue equation is given by
22— (a+ o)A+ (ac — b?) = 0. (A.3)

By solving (A.3), we can obtain the eigenvalueas

A:%{(a+c):|:\/(a+c)2—4(ac—b2)}

1 .
=5 {(w%—i—w%—i—wf) + \/(wf — w%—i—w?cos@)z—i-a)g‘smzw}
= Q2. (A.4)

Utilizing the coordinate transformationiR, (¢)|(x’, y',z") — (", y",z")} effected by
rotating the coordinates’ and z’ by an angle¢ with respect to they’-axis & the y’-

axis), i.e.,
x' cosp 0 —sing x”
()55 2))
7 sinp 0 cosp 7"

in (A.1), equation (2.3) can be expressed as

1 ”o- m / m "
he = 5 (Pl + Py + P2) + wepy (v COSp — 2 sing) + Q"2+ SQ22 (AB)
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where cog and sinp are
Qi —c b

P S sing = —o——.
V(@2 — )2+ b2 J (2 — )2+ b2

Accordingly, the angle of rotatios is related to the confining-potential parameters as well
as the tilt angle of the applied magnetic fieldB:

COSp = (A.7)

tang — (w3 — w?)sind

(A.8)

(0 — w3) coS D + w? + \/(wf — w3 + w2C0S D)2 + w?sint o
In the case where, w; < ., equations (A.4) and (A.8) can be approximated as
1
Q2 ~ E{(wi + 03 + w?) £ (0? + wi cos D — w3 cos D)) (A.9)
and
tang >~ 0 (A.10)

respectively. From (A.10) ~ 0. Thus, equation (A.5) expresses identical transformations.
Therefore, equation (A.6) can be expressed by equation (2.5) in the caseswhepek w,,
if we notice that, — Q. andQ_ — @, in (A.6).
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